Hypothesis Testing Cheat Sheet

ParameterStatistic/EstimateConditions(Theoretical) Sampling DistributionConfidence IntervalHypothesisTest Statistic
p\hat{p}1. independent observations
2. np>= 10 and n(1-p)>=10
\hat{p} \sim N(\mu_{\hat{p}} = p, \sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}})\hat{p} \pm z^{\ast} \sqrt{\frac{\hat{p} (1 - \hat{p})}{n}}H_{0} : p = p_{0}
H_{A} : p \ne p_{0}
z = \frac{\hat{p} - p_{0}}{\sqrt{\frac{p_{o} (1 - p_{o})}{n}}}
p_1 - p_2\hat{p_1} - \hat{p_2}1. Independent Observations and groups

2. n_{1}\hat{p_1} \ge 5, n_{1}(1 - \hat{p_1}) \ge 5

n_{2}\hat{p_2} \ge 5, n_{2}(1 - \hat{p_2}) \ge 5
\hat{p_1} - \hat{p_2} \sim N(\mu_{\hat{p_1} - \hat{p_2}} = p_1 - p_2, \sigma_{\hat{p_1} - \hat{p_2}} = \sqrt{\frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}})\hat{p_1} - \hat{p_2} \pm z^{\ast} \sqrt{\frac{\hat{p_1}(1 - \hat{p_1})}{n_1} + \frac{\hat{p_2}(1 - \hat{p_2})}{n_2}}H_0 : p_1 - p_2 = 0
H_A : p_1 - p_2 \ne 0
z = \frac{\hat{p_1} - \hat{p_2}}{\sqrt{\frac{\hat{p_1}(1 - \hat{p_1})}{n_1} + \frac{\hat{p_2}(1 - \hat{p_2})}{n_2}}}
\mu\bar{x}1. Independent observations
2. \sigma is known (yes or no)
3. Population is normal
OR n \ge 30
If \sigma is known :
\bar{X} \sim N(\mu_{\bar{x}} = \mu, \sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}

If \sigma is not known:
\bar{X} \sim t_{df}, where df = n-1
If \sigma is known:
\bar{X_1} \pm Z^{\ast} * \frac{\sigma}{\sqrt{n}}

If \sigma is not known:
\bar{X} \pm t^{\ast} * \frac{s}{\sqrt{n}} where s is the sample standard deviation
H_{0} : \mu = \mu_{0}
H_{A} : \mu \ne \mu_{0}
If \sigma is known:
z = \frac{\bar{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}}

If \sigma is not known:
t = \frac{\bar{x} - \mu_0}{\frac{s}{\sqrt{n}}}
\mu_1 - \mu_2\bar{x}_1 - \bar{x}_21. Independent observations and groups
2. \sigma_1 and \sigma_2 known? (yes or no)
3. Both populations are normal OR
n_1 \ge 30 and n_2 \ge 30
If \sigma_1 and sigma_2 are known:
\bar{X_1} - \bar{X_2} \sim N(\mu_{\bar{x_1} - \bar{x_2}} = \mu_1 - \mu_2, \sigma_{\bar{x_1} - \bar{x_2}} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}})

If \sigma_1 and \sigma_2 are unknown:
\bar{X_1} - \bar{X_2} \sim t_{df} where df = min(n_1, n_2) - 1
If \sigma_1 and \sigma_2 are known:
\bar{x_1} - \bar{x_2} \pm z^{\ast} * \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}

If \sigma_1 and \sigma_2 are unknown:
\bar{x_1} - \bar{x_2} \pm t^{\ast} * \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}
H_0 : \mu_1 - \mu_2 = \mu_0
H_A : \mu_1 - \mu_2 \ne \mu_0
If \sigma_1 and \sigma_2 are known:
z = \frac{\bar{x_1} - \bar{x_2} - \mu_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}

If \sigma_1 and \sigma_2 are unknown:
t = \frac{\bar{x_1} - \bar{x_2} - \mu_0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}
\mu_d\bar{x}_d1. Independent Observations and Dependent groups
2. Population distribution of differences is approximately normal
\bar{X_d} \sim t_{df} where df = n-1, where n is the number of pairs\bar{x_d} \pm t^{\ast} * \frac{s_d}{sqrt{n}}H_{0} : \mu_d = 0
H_{A} : \mu_d \ne 0
t = \frac{\bar{x}_d - 0}{\frac{sd}{\sqrt{n}}}

Leave a comment